Acceleration Scenarios for the Muon Collider

Norbert Holtkamp

Muon Technical Advisory Committee, July 22nd 1999

- Introduction
- Parameters
- Energy Extraction Cavity Filling
- Power Sources
- Single Bunch Effects
- Summary + Outlook

Rf Systems being used in the MC

Proton Driver:

- n=2, F= (3.2-7.6 MHZ), G=(50-100kV)
- multi-turn (msec)

Phase Rotation:

- n=3 or >15, F= (30-60 MHZ), G= (4-6 MV/m)
- linac

• Cooling:

- n=3-4, F= (60-805 MHz), G= (5-35 MV/m)
- linac

• Acceleration:

- n=4, F= (50-1300 MHz), G= (5-35 MV/m)
- linac and multi-turn
- Total of 12-15 rf systems with different applications and different requirements

Parameters

 Goal: Find an acceleration scenario for the Muon Collider

Transverse Emittance:

$$\beta \gamma \cdot \varepsilon_{x,y} = \varepsilon_t^n$$

Longitudinal Emittance:

$$\beta \gamma \cdot \frac{\Delta p}{p} \cdot \sigma_z = \varepsilon_{long}^n$$

6-dimensional emittance:

$$\left[\varepsilon_{t}^{n}\right]^{2} \times \left[\varepsilon_{long}^{n}\right] = \varepsilon_{6D}^{n}$$

$$\varepsilon_{6D}^n = 170 \times 10^{-12} \qquad \pi \cdot \text{m}^3$$

- Number used: 170x10⁻¹² (for any scenario)
- Number to start: 95x10⁻¹²
 - transverse: $41x10^{-6}$ (π m rad)
 - longitudinal: $6x10^{-2}$ (π m %)
 - $\sigma_z = 30 \text{ cm}$
 - $\sigma p/p = 11 \%$

High energy MC

Acceleration Limits

Muon Decay

requires fast acceleration of muons

Decay Equation:

$$\frac{dN}{ds} = -\frac{1}{L_{\mu} \cdot (\gamma_0 + \gamma' \cdot s)} \qquad L_{\mu} = c \cdot \tau_{\mu}$$

Solution of this equation:

$$\frac{N(s)}{N_0} = \left(\frac{E_0}{E_{final}}\right)^{\frac{1}{L_{\mu} \cdot \gamma'}}$$

Condition for acceleration:

$$L_{\mu} \cdot \gamma' >> 1$$
 $L_{\mu} \cdot \frac{e \cdot U'_{rf}}{mc^2} >> 0.16 \frac{MeV}{m}$

Condition for acceleration in a synchrotron:

$$\frac{N_{turns}}{B[T]} << 300$$

Capture and Acceleration

After cooling:

• Gradient (F)

$$G \equiv 30 \frac{MV}{m} \cdot \sqrt{F/800MHz}$$

• Emittance:

-fix E

$$\frac{\Delta E_{\text{max}}}{\varphi_{\text{max}}} = \left[\frac{e \cdot G \cdot \sin(\phi_s) \cdot \gamma^3 \cdot m \cdot v_s^3}{\omega} \right]^{0.5}$$

The Acceleration in the first Linac

How to decide what is realistic?

- Comparison to other large scale accelerating systems:
 - normal conducting systems
 - SLAC Linac: 3 GHz, 17 MV/m, 70 MW Klystrons, 280 Klystrons
 - DESY: 500 MHz, 2 MV/m, 800 kW cw, 16 Klystrons
 - super conducting systems
 - CERN: 350 MHz, 6 MV/m, 1.4 MW cw, 40 Klystrons
 - CEBAF: 1.3 GHz, ~10 MV/m, -----
 - (TESLA: 1.3 GHz, 25 MV/m, 10 MW klystrons)

Acceleration in the Muon Collider

Compare to LC

$$L = \frac{N^2 \cdot f_c}{4\pi \cdot \sigma_x^* \sigma_y^*} \propto \underbrace{\frac{P_{beam}}{E_{cms}}}_{E_{cms}} \times \underbrace{\frac{N_e}{4\pi \sigma_x^* \sigma_y^*}}_{V} \times H_D$$

• Muon Collider:

Gain by: $N_e \rightarrow N_e \times f_{rev}N$

loose by: σ 's

cms Energy	GeV	3000	400	10	0
Pion energy	GeV	16	16	10	5
Pions/bunch	10 ¹³	2.5	2.5	5	
bunches/pulse		4	4	2	
rep rate	Hz	15	15	15	5
beam power	MW	4	4	4	
μ/ bunch	10 ¹²	2	2	4	
μ beam power	\mathbf{MW}	28	4	1	
collider circ.	m	6000	1000	30	0
~depth	m	500	50	5	
rms dp/p	%	.16	.14	.12	.01
6D emittance $(\pi \text{ m rad})^3$	10 ⁻¹²	170	170	17	0
transv. Emitt. (π m rad)	10 ⁻⁶	50	50	85	195
β*	cm	0.3	2.3	4	9
$\sigma_{\rm r}$ at spot	μ m	3.2	24	82	187
Luminosity 10 ³⁴	cm ⁻² sec ⁻¹	5	0.1	0.012	0.002

Efficient Energy Extraction

Most efficient way:

 run matched and cw (losses during filling of the cavity are negligible

$$\eta_{beam} \sim \eta_{klystron} \times \eta_{modulator} \times P_{beam} / P_{cavity walls}$$

- Efficient: -> see LC
 - beam pulse (RF on +beam) is long or at least equivalent to filling time
 - keep ΔE/E per bunch under control limit Energy extraction per turn
 - ==> automatically to multi bunch scheme
- Difficult to achieve Efficiency
 - single Bunch

$$\begin{split} P_{beam} &= \eta_{ac \to DC} \cdot \eta_{DC \to RF} \cdot \eta_{RF \to beam} \\ \eta_{RF \to beam} &= \frac{(N \cdot e)_{pulse} \cdot U_{acc}}{P_{klystron}} * \frac{1}{3 \cdot T_{fill}} ; &\propto F^{1.5}(T_{fill}) \times F^{0.5}(U_{acc}) \end{split}$$

but limited by $\Delta E/E$ allowed in Bunch

Efficient Acceleration

- Muon Collider requires more <u>efficient acceleration</u> as LC or <u>smaller emittances</u> compared to present values
- Energy storage and Extraction

$$k = \frac{\left(\int \left|E_z(z) \cdot e^{ikz}\right| dz\right)^2}{4 \cdot W_{st}}$$
 (geometric const. per unit lenght
$$k \propto f^2$$
 (per m, for scaled cavity)
$$r_{sh} = \frac{2 \cdot Q}{\omega} \cdot k$$
 (per m)
$$r_{sh} \propto \sqrt{f}$$
 (for scaled cavity)

$$T_{fill} = \frac{2 \cdot Q}{\omega} \propto f^{-1.5}$$
 (filling time)

• Example: High Gradient 400 MHz Cavity, 4 MV/m

$$k = 18 \frac{V}{pC \cdot m} \cdot \left[\frac{f}{3GHz} \right]^{-2} \Rightarrow W_{st} \approx 12.5 \text{ Joule}$$

$$U_{acc} = 4 \text{ MV} \qquad \Rightarrow W_{ext} / turn = q \cdot U \approx 1.6 \text{ Joule at } 2.5 \times 10^{12}$$

$$\Rightarrow \frac{\Delta U}{U} \approx 0.5 \cdot \frac{\Delta W}{W} \Rightarrow \text{energy spread} \approx 6.5\%$$

Scaling of RF Requirements

Comparison of RF Parameters as a Function of Frequency								
at a Fixed Gradient of 5 and 25 MV/m and 15 Hz Rep Rate								
Gradient:	5	MV/m			Frep:	15	Hz	
								-
Frequency	Q Value		duty cycle		Wst	Peak P	aver. P_rf	Aperture
[MHz]		[microsec]		MOhm/m	Joule/m	MW/m	kW/m	cm
			=3*T_f*frep				x 3*T_f	
F	F^0.5	F^1.5	F^1.5	F^0.5	F^2	F^0.5	F^2	F^1
3000.00	14000	0.74	0.033	60.000	0.313	0.417	0.014	3.000
1300.00	21268	2.61	0.117	39.497	1.664	0.633	0.074	6.923
805.00	27027	5.35	0.241	31.081	4.340	0.804	0.194	11.180
500.00	34293	10.92	0.491	24.495	11.250	1.021	0.502	18.000
400.00	38341	15.26	0.687	21.909	17.578	1.141	0.784	22.500
100.00	76681	122.10	5.495	10.954	281.250	2.282	12.540	90.000
50.00	108444	345.36	15.541	7.746	1125.000	3.227	50.159	180.000
Gradient:	25	MV/m			Frep:	15	Hz	
3000.00	14000	0.74	0.033	65.000	7.813	9.615	0.322	3.000
1300.00	21268	2.61	0.117	42.788	41.605	14.607	1.712	6.923
805.00	27027	5.35	0.241	33.671	108.503	18.562	4.466	11.180
350.00	40988	18.65	0.839	22.202	573.980	28.151	23.623	25.714
100.00	76681	122.10	5.495	11.867	7031.250	52.666	289.380	90.000
						P_rf/ MW	P_ave/ MW	1
40 m rf in t	40 m rf in the decay Channel: (50 MHz, 5 MV/m, ac_eff=35%)			=35%)	129.10	5.73		
300 m rf in	cooling: (1	00 MHz, <mark>7</mark> .	5 MV/m, ad	c_eff=35 %)		1540.47	24.18	
200 m rf in	cooling: (3	50 MHz, 15	MV/m, ac	_eff=35 %)		2053.96	4.03	> CERN LE
200 m rf in	cooling: (8	05 MHz, <mark>25</mark>	MV/m, ac	_eff=35 %)		3000.00	2.55	
					TOTAL:		36.50	
TOO OPTI	MISTIC ALI	READY						
assuming that P_rf -> P_beam small (allmost nor P_rf needed for acceleration) -> not true for large f								

Multi-turn Acceleration

- Multi-turn acceleration in high Q device:
 - without turn by turn phase control: (FFAG):

barely enough energy stored for 6 turns

FFAG type Acclerator				
Circumference	600	m		
RF structure	300	m		
Acc. Gradient	3.8	MV		
Cavity Gradient	6	MV		
start Phase	-48	0		
Wake field ???				
Ener. Spread # 1	7	%		
Power				
Power to Cav.	1.3	MW		
Power to Beam	0.7	MW		

Available Power Sources

- Klystrons
- Tetrodes

Klystron Scaling in F, P, η

Frequency:

- in principle klystron can be scaled geometrically:

$$I = P \cdot V^{\frac{3}{2}}, \qquad P = \frac{4}{9} \varepsilon_0 (2 \cdot \frac{e}{m})^{0.5} \frac{A}{d^2}$$

- if Voltage is kept const: ->Beam Power is constant
- if current density on is kept constant -> Voltage can be increased and:

• Peak Power:

- Ppeak $\sim 1/f^2$

• Efficiency:

- most Klystrons are build with $P = 2x \cdot 10^{-6} \text{ A/V}^{3/2}$
- higher efficiency means: lower perveance
- lower perveance means: higher voltage per Ampere
- -> less beam current for the same voltage and less total power

Limits for Peak Power and Frequency

How to determine the physical size of a klystron

Two cases:

ideal situation with no space charge:

$$z_{opt} = 1.84 \cdot \frac{u_o}{2\pi \cdot f} \cdot \frac{2}{\alpha \cdot \beta}$$

 $u_o := velocity of electrons = \beta*c = (1-1/\gamma^2)^{0.5} *c$

 $\alpha := modulation gap voltage/beam voltage$

 β := transit time

with space charge:

$$\lambda_p = \frac{2\pi \cdot u_o}{\sqrt{\frac{e}{m} \cdot \frac{n}{\varepsilon}}}$$

n := electron density

Example for Klystrons scaled with Frequency and Peak Power

Example for 1)

```
f = 1 \text{ GHz}, U_{gun} = 450 \text{kV}, uP=1.0, 130 MW Beam power ->
75 MW rf power,
```

$z_{opt} := 2.8$ meter only for the rf

+ gun + collector ---> easily a 5 meter long klystron with a standard approach.

Step one is the study to show a way out !!!!!!!

- 1. give up on efficiency and increase μP
- 2. go to MB devices -> happened and is going on with CPI
- 3. develop new rf sources
- 1. we would have to pay for all the development and take the risk at the same time ---> time

What about lower frequencies:

- scaling shows : $z_{opt} \sim 1/f$ klystron becomes longer
- infrastructure in industry can not mechanically accommodate this easily
- test stands are not available
- becoming massive devices

What to Do Now?

- Concentrate for now on the well understood territory: Two Steps:
 - do Study with CPI on high efficiency multi-beamklystron
 done by end of this FY
 - start construction with LITTON on extended version of existing 805 MHz Klystron -> go to 40 MW x 3.5

Parameter being asked for originally				
Peak Output Power	MW	80 or more		
Pulse length	μsec	16 or more		
Repetition rate	Hz	15 or more		
VSWR		1.5, during the transient		
Bandwidth	MHz	small, to be discussed		
gain	dB	56 or a little less		
horizontal mounting ??				

Discussions so far with LITTON and CPI

Development plan:

- Get an offer for a preliminary Study of a 805 MHZ klystron with the goal to describe the Design to be used and the approximate cost. This should be finished before end of FY 99
- Finance the development of this klystron by the Muon Collider collaboration in FY00 and 01. Development will take approximately 2 years of sign up.
- Develop the infrastructure to operate this klystron in the lab

Recirculating Linacs

A Long Linac

Beam Driven Instabilities

What are the Problems:

- Instabilities in the collider: -> dominant in the HIGGS factory ($\Delta E/E=0.001$ %)
- Instabilities in the accelerators: ->dominant in the high energy accelerators (F >800 MHz and higher)

How we get the solution:

- Tools are there for the collider (-> B. NG at all)
- Tracking programs for acceleration, transverse motion and Wake Fields

Longitudinal Wake-Fields

Linac Type Acceleration: no synchrotron oscillations

RF +Wake-field

$$\varepsilon = 6.526 \cdot 10^{-5} \text{ m}$$

Frequency	500	MHz
Gradient	5	MV
Energy spread	1.3	%
Phase	12	0
Accel. loss	7	%
bunch σ	5	mm

reduce charge per bunch more bunches

Tolerances

Transverse Wakefield

- scale like the frequency cubed
- in a high energy linac the driving force for emittance degradation

$$x_1^{"} + k^2 x_1 = 0$$

Two particle Model

$$x_2^{\prime\prime} + (k + \Delta k)^2 x_2 = C \cdot x_1$$

,
$$C = \frac{e \cdot N \cdot W_{\perp} \cdot \sigma_{s}}{2 \cdot E}$$

$$\frac{x_2 - x_1}{x} = \frac{C \cdot s}{2ik} \cdot e^{iks}$$

$$\Rightarrow \frac{\Delta \varepsilon}{\varepsilon} \propto \frac{e \cdot N^2 \cdot F^6 \cdot \sigma_s}{G^2 \cdot L^2 \cdot k \cdot \varepsilon}$$

Emittance growth

$$\Rightarrow \frac{\sigma}{E} = \frac{e \cdot N \cdot W_{\perp} \cdot \sigma_{s}}{2 \cdot k^{2} \cdot E}$$

Required energy spread

Tolerances compared to LC

- Take example TESLA
 - 20 km rf structure
- MC \rightarrow 5 km per turn

Alignment tolerances are ~ 1/2.

For same length: 2x tighter

TESLA					
Bunchlength σ	0.7	mm			
W'*σ	26	V/pC/m ²			
$k_{\beta}=2\pi/\beta$	0.06	1/m			
N	2	10^{10}			
Length	14	Km			
γε x10 ⁻⁶	0.03	m			
Muon Colli	Muon Collider 1.3 GHz				
Bunchlength σ	5	mm			
W'*σ	70	V/pC/m ²			
Acc. Gradient	25	MV/m			
$k_{\beta}=2\pi/\beta$	0.12	1/m			
N	4	10^{12}			
Length	5	Km			
γε x10 ⁻⁶	50	m			

- HOM losses (relevant for sc rf):
 - $-W_{long} \sim sqrt(\sigma)$
 - $-W_{loss} = Q^{2}*k => x 3700$

Tolerances and BNS

- Frequency F^3 +geom.: x 12 x 1.6=20
- Bunch length $sqrt(\sigma)$: x 2.2
- Energy 1/E: x 5
- Bunch Charge N: x 125
- β -wave number k^2 : x 1 (very opt.)
- Total

BNS phase=0

Do this with an RFQ? 4% of magnet Focussing with RF field?

T 7		7	5
X	7.	/	J

SLC. 3GHz				
Bunchlength σ	1	mm		
W'	1500	V/pC/m ²		
Acc. Gradient	17	MV/m		
$k_{\beta}=2\pi/\beta$	0.06	1/m		
N	2	10^{10}		
Energy	25	GeV		
σ/E	1.5	%		
Muon Collider 1.3 GHz sc				
Bunchlength σ	5	mm		
W'	70	V/pC/m ²		
Acc. Gradient	25	MV/m		
$k_{\beta}=2\pi/\beta$	0.06	1/m		
N	2.5	10^{12}		
Energy	125	GeV		
σ/E	4.1	%		

Synchrotrons

Based on MI Dipole Magnetic Data:

Example Synchrotron					
Energy	150 - 2000	GeV			
ave. radius ρ	5	km			
cycle rate	15	Hz			
Dip. Inductance	0.3	mH/m			
Filling fact.	0.7				
B_{max}	1.7	T			
I_{max}	9	kA			
Synchr	Synchrotron Parameter				
Inductance	8	Н			
U_{ind}	400	kV			
P _{ave} ->copper	140	MW			
Laminat. Thick	0.5	mm			
P _{ave} ->laminat.	70	MW			
Vacuum Chamb.	???				
RF (for accel)	27 (19)	GeV			
(13xLEP install.)					
may be at lower rep rate					

• At lower rep. Rate this is a may be ...

Pulsed Rings (~ Synchrotrons)

- Pulsed Magnets? Should disappear from Baseline or need severe R&D program
 - 360 µsec ramp time
 - 9kV at each magnet
 - very expensive iron laminations (metglas, 0.025 mm)
 - sc type cable with up to 24 kA (transposed strands)
 - fast ramping rf in the ring
 - completely unclear beam dynamics

Necessary Steps

- Transverse and Longitudinal Stability are both an issue
 - Need a tracking program to simulate these effects
 - concrete piece of work.....
 - issue for collaboration: Post Docs or people interested in BD should start working on it
 - try to get Fermi-people involved in this
 - Investigate what actually is necessary to achieve small energy spread, as eg in the HIGGS Factory
- Reconsider more bunches
- Reconsider more Pions per second
- Reconsider smaller emittance
- Certainly push for more higher Frequency systems